Chromium(II) Complexes with Halogen-Substituted Pyridines

M. M. KHAMAR, L. F. LARKWORTHY

Department of Chemistry, University of Surrey, Guildford, Surrey GU2 5XH, U.K.

and D. J. PHILLIPS

School of Chemistry, University of New South Wales, Kensington, N.S.W., 2033, Australia

Received February 9, 1979

Complexes of chromium(II) halides with 3-chloro-, 3-bromo-, 3-iodo-, and 3,5-dichloro-pyridine of the types $Cr(pyridine)_2X_2$, X = Cl, Br, I, and Cr(pyri $dine)_2(H_2O)_2I_2$ have been isolated. The former compounds are apparently polymeric and antiferromagnetic and the latter monomeric with temperatureindependent magnetic moments. One tetrakis(amine) complex, $Cr(3,5-dichloropyridine)_4I_2$, has been obtained. Far infrared investigations confirm that 'short' bond Cr-Cl stretching vibrations of the bis(amine) complexes occur near 320 cm⁻¹, and Cr-Br and Cr-I stretching vibrations at approximately 260 cm⁻¹ and 240 cm⁻¹ respectively.

Introduction

Complexes of pyridine and substituted pyridines with many metal ions of the first transition series have been widely investigated [1a]. With chromium-(II), however, only pyridine [2] and methylpyridine [3] complexes, have been previously reported. We present a magnetic and spectroscopic investigation of a series of chromium(II) complexes with halogensubstituted pyridines.

Results and Discussion

The complexes isolated fall into three classes, a) $Cr(3-Xpy)_2Hal_2$; b) $Cr(3-Xpy)_2(H_2O)_2I_2$, and (c) $Cr(3,5-Clpy)_4I_2$ (see Table I, 3-Xpy is 3-chloro-, 3-bromo-, or 3-iodo-substituted pyridine, 3,5-Clpy is 3,5-dichloropyridine, and Hal is Cl, Br, or I). The first class of compound has not previously been reported as the iodide.

Complexes of the type $M(py)_2Cl_2$ and $M(py)_2Br_2$ with copper(II) and chromium(II) have rhombicallydistorted, halogen-bridged structures, with two different types of M-Hal bond lengths. For example, $Cu(py)_2Cl_2$ has Cu-Cl bond lengths of 2.298 and 3.026 Å, and the Cu-N bond length is 2.004 Å. Similar structures would be expected for our complexes of the type $Cr(X-py)_2Hal_2$.

Magnetic properties support halogen-bridging. The Cr(X-py)₂Hal₂ complexes differ from those in groups b) and c) in that the room temperature magnetic moments are depressed below the spin-only value (4.90 B.M.) for four unpaired electrons, and further reductions in μ_{eff} occur on cooling (Table II). The compounds obey the Curie-Weiss law with large θ values in the range 20° to 60°. This magnetic behaviour is consistent with antiferromagnetic interaction made possible through halogen-bridging. Bridging iodide is uncommon, presumably because of the greater size and polarizability of this halide. With nickel(II), for example, $Ni(py)_2I_2$ is tetrahedral [1b] although the bromide and chloride are polymeric. Although copper(II) and high-spin chromium(II) frequently form similar compounds, iodo-complexes with pyridines do not seem to have been described for copper(II), presumably because of its oxidising ability.

The visible spectra of the $Cr(X-py)_2Hal_2$ complexes have intense charge transfer absorptions above 20,000 cm⁻¹, and less intense bands (Table I), assigned to d-d transitions, occur at lower energies. The d-d absorptions are similar to those reported [2b, 3] for other $Cr(py)_2Hal_2$ complexes.

Four d-d transitions are expected [5b] with rhombically distorted chromium(II). There is firstly the ${}^{5}B_{g} \rightarrow {}^{5}A_{g}$ transition between the split components of the ${}^{5}E_{g}$ ground term (O_h symmetry). All the Cr(X-py)₂Hal₂ complexes exhibit, near to 10,000 cm⁻¹, a shoulder or band which is assigned to this transition. The other transitions are to the three components of the split ${}^{5}T_{2g}$ level. The main d-d band near 14,000 cm⁻¹ is assigned to these transitions superimposed. Slight asymmetry is found in this band with some complexes, and there is some indication of three components in the spectra of Cr(3-Brpy)₂Cl₂ and Cr(3-Ipy)₂X₂ from the presence of not very obvious shoulders near 12000 cm⁻¹.

Complex	Analyse	s (%)					Reflectance Spectra/cm ⁻¹				
		С	Н	N	Cr	Hal	-				
Cr(3-Clpy) ₂ Cl ₂	Calc. Found	34.3 34.1	2.3 2.3	8.0 7.8	14.9 15.0	20.25 20.5	RT LT		14000s 14300s		10700sh 10700m
Cr(3-Clpy) ₂ Br ₂	Calc. Found	27.35 27.2	1.8 2.0	6.4 6.1	11.8 12.1	36.4 36.8	RT LT		1 3400s 1 3800s		10000sh 10100m
$Cr(3-Clpy)_2(H_2O)_2I_2$	Calc. Found	21.1 21.0	2.1 2.0	4.9 5.1	9.1 9.35	44.6 45.4	RT LT	16000s 16500s		12000m 12000m	10600sh 10700sh
Cr(3-Brpy) ₂ Cl ₂	Calc. Found	27.4 28.0	1.8 1.8	6.4 6.3	11.85 11.95	16.15 16.3	RT LT		1400s,vb 14200m	12150sh	10400sh 10400sh
Cr(3-Brpy) ₂ Br ₂	Calc. Found	22.75 22.8	1.5 1.7	5.3 5.1	9.85 10.1	30.3 30.6	RT LT		13500s 13900s		10300sh 10400m
Cr(3-Brpy) ₂ I ₂	Calc. Found	19.3 19.3	1.3 1.3	4.5 4.4	8.4 8.6	40.8 41.7	RT LT		13100vs 13500vs		10700sh 10600m
Cr(3-Brpy) ₂ (H ₂ O) ₂ I ₂	Calc. Found	18.25 18.1	1.8 1.9	4.3 4.2	7.9 8.1	38.6 38.5	RT LT	15700s 16300s		12000m 12000m	10600sh 10700sh
Cr(3-Ipy) ₂ Cl ₂	Calc. Found	22.5 22.55	1.5 1.5	5.3 5.25	9.8 9.9	13.3 13.6	RT LT		14000s 14500s	12400sh 12600sh	10500sh 10900sh
Cr(3-lpy) ₂ Br ₂	Calc. Found	19.3 19.6	1.3 1.4	4.5 4.4	8.4 8.6	25.7 26.3	RT LT		13600sh 14100s	11900sh 12000sh	10400sh 10400sh
Cr(3-Ipy) ₂ I ₂	Calc. Found	16.8 16.75	1.1 1.1	3.9 3.75	7.3 7.5	35.5 36.2	RT LT		13250vs 13600vs	12100sh	11000sh 11000sh
Cr(3,5-Clpy) ₂ Cl ₂	Calc. Found	28.7 28.3	1. 4 1.75	6.7 6.35	12.4 12.6	16.9 17.2	RT LT		13400s 13750s		10000sh 9600m
Cr(3,5-Clpy) ₂ Br ₂	Calc. Found	23.65 23.5	1.2 1.5	5.5 5.2	10.2 10.4	31.5 32.0	RT LT		13400s 13600s		9800sh 9300m
Cr(3,5-Clpy) ₂ I ₂	Calc. Found	19.95 20.1	1.0 1.2	4.65 4.3	8.6 8.8	42.2 42.3	RT LT		13000s 13200s		9200m 8800m
Cr(3,5-Clpy)4I2	Calc. Found	26.7 26.3	1.35 1.45	6.2 5.7	5. 8 5.95	28.3 28.1	RT LT	15000s,sh 15200s,sh			7000m

TABLE I. Analytical Data and Reflectance Spectra.

TABLE II. Magnetic and Preparative Data for the Complexes.

Complex	Colour	μ _{eff} ^a (B.M.)		$\theta^{\mathbf{b}}$	Preparative ^c	
		295 K	90 K	(°)	Method	
Cr(3-Clpy) ₂ Cl ₂	light green	4.08	3.65	37	E	
Cr(3-Clpy) ₂ Br ₂	green	4.51	3.93	48	Ε	
$Cr(3-Clpy)_2(H_2O)_2I_2$	olive green	4.80	4.85	-3	С	
Cr(3-Brpy) ₂ Cl ₂	light green	4.59	4.10	37	Е	
Cr(3-Brpy) ₂ Br ₂	dark green	4.59	4.11	37	Е	
Cr(3-Brpy) ₂ I ₂	green	4.61	4.13	36	D	
$Cr(3-Brpy)_2(H_2O)_2I_2$	olive green	4.83	4.78	2	С	
Cr(3-lpy) ₂ Cl ₂	light green	4.64	4.30	22	Е	
$Cr(3-Ipy)_2Br_2$	bluish green	4.69	4.30	27	Е	
$Cr(3-Ipy)_2I_2$	green	4.60	4.27	22	С	
Cr(3,5-Clpy) ₂ Cl ₂	light yellow	4.71	4.06	53	Ε	

(continued on facing page)

	TABLE	11.	(continued))
--	-------	-----	-------------	---

Complex	Colour	μ _{eff} ^a (B.M.)		θ ^b (°)	Preparative ^c Method
		295 K	90 K		
Cr(3,5-Clpy) ₂ Br ₂	yellow	4.67	4.00	57	E
$Cr(3,5-Clpy)_2I_2$	dark yellow	4.69	4.33	24	Α
$Cr(3,5-Clpy)_4I_2$	dark red	4.82	4.63	11	В

^aCalculated from $\mu_{eff} = 2.828 (x_A T)^{1/2}$. ^bCurie-Weiss law taken as $\chi_A^{-1} \alpha(T + \theta)$, and θ calculated by a least squares extrapolation. ^cThe significance of these symbols is given in the experimental section.

The energies of the transitions to the components of the ${}^{5}T_{2g}$ term are related to the average 10Dq value for each complex. In line with this, the energies decrease in the order mepy [3] > py [2b] > 3X-py > 3,5-Cl for complexes with the same halide, of the type Cr(py)₂Hal₂. This order is that expected for the 10Dq values of the pyridine ligands.

The energy of the ${}^{5}B_{g} \rightarrow {}^{5}A_{g}$ transition is related to the distortion produced by the Jahn--Teller effect, and to that produced by the difference in the 10Dq values of the pyridine and halide ligands. This distortion should therefore decrease as the 10Dq values of the pyridines decrease. In keeping with this, the energies of this band are mainly in the same order as that given above for the 10Dq values of the pyridine ligands.

The complexes $Cr(X-py)_2(H_2O)_2I_2$ (X-py = 3chloro and 3-bromo-pyridine), in contrast to the complexes $Cr(X-py)_2Hal_2$, are magnetically dilute. They obey the Curie law, with magnetic moments independent of temperature and near to the spin-only value. This suggests that halogen-bridging is absent and we assume that the complexes are monomeric and six-coordinate.

The electronic spectra show evidence of reduced symmetry compared to the $Cr(X-py)_2Hal_2$ complexes because three d-d absorptions are detected at approximately 16,000, 12,000 and 10,800 cm⁻¹. We assign the lowest energy absorption to the transition between the components of the split 5E_g term and the other absorptions to transitions to components of the ${}^5T_{2g}$ term.

The complex $Cr(3,5-Clpy)_4I_2$ has a magnetic moment of 4.8 B.M. at room temperature near the spin-only value for high-spin chromium(II), and a six co-ordinate *trans* structure, with terminal iodides, seems likely, similar to that found for other [M(pyridine)_4(Hal)_2] complexes [2-5]. The θ value of 11° is, however, larger than commonly found for magnetically-dilute chromium(II) compounds. In its visible spectrum a clear d-d band is found at 7000 cm⁻¹ and this is assigned to the transition between the components of the ${}^{5}E_{g}$ term. Other d-d transitions appear as a shoulder at 15000 cm⁻¹, partly masked by a low

Fig. 1. Far infrared spectra of A, $Cr(3-Brpy)_2Cl_2$; B, $Cr(3-Brpy)_2Br_2$; and C, $Cr(3-Brpy)_2I_2$.

energy, high intensity absorption which we assume to be charge transfer in origin. The spectra of the corresponding pyridine [2b] and methylpyridine [3] complexes are similar but with the distortion band at higher frequency because of the stronger fields of these ligands.

All the bis-ligand complexes show intense absorption above 20,000 cm⁻¹, which we assume to be intra-ligand or charge transfer in origin. The free pyridine ligands absorb in the range 35,000 to 39,000 cm⁻¹, and absorption in this region in the complexes may also be intra-ligand in character. The additional absorption in the region 20,000 to 30,000 cm⁻¹ is probably of charge transfer type. Relatively lowenergy metal to ligand charge transfer absorption is possible for complexes of readily oxidisable metals with ligands containing empty antibonding π -orbitals [5]. The absorptions in the $20,000-30,000 \text{ cm}^{-1}$ region are not markedly halogen-dependent, and we therefore assign them to metal-to-pyridine charge transfer transitions, possibly of $e_g \rightarrow \pi^*$ type. Similar low energy absorptions have been reported for vanadium(II)-pyridine complexes [7] and chromium(II)methylpyridine [3] complexes.

TABLE III. Far-infrared Spectra (cm⁻¹).^a

_				
3-Clpy	$Cr(3-Clpy)_2 Cl_2$	Cr(3-Clpy) ₂ Br ₂	$Cr(3-Clpy)_2(H_2O)_2I_2$	
402s	412m	412m	416m	
	336vs 310vs ν(Cr–Cl)	330m	324m	
292s,vb	272s v(Cr–N)	300w 274vs v(Cr–N) 260vs v(Cr–Br)	270s v(Cr–N)	
232w 195m,b	212w,b	212w,b	212w	
	$ \begin{array}{c} 177 \text{vs} \\ \delta \text{(Cr-N)} \\ \delta \text{(Cr-Cl)} \\ 150 \text{m} \end{array} $	178m δ(Cr–N) 164s 121m	196m 184m δ(Cr–N) 160vs	
	108vs		100m	
3-Вгру	Cr(3-Brpy) ₂ Cl ₂	Cr(3-Brpy) ₂ Br ₂	$Cr(3-Brpy)_2I_2$	$Cr(3-Brpy)_2(H_2O)_2I_2$
410m	408m 336w	408m 332w	408m 330w	408m 332w
320w	324vs v(Cr–Cl) 285m 268m v(Cr–N)	300m 272m v(Cr–N) 252s v(Cr–Br)	294m 264m v(Cr–N)	290m 265vs v(Cr–N)
	200w	198w	238s v(CI-l)	236w 218w 210w
	180w	170		2100
	$\frac{168m}{\delta} \frac{\delta (Cr-N)}{\delta (Cr-Cl)}$	176m δ (Cr–N) 150m	170m δ (Cr–N) 143m	179vs,bδ(Cr–N) 136s
	98s	110m	94w	96vs
3-Ipy	Cr(3-Ipy) ₂ Cl ₂	Cr(3-Ipy) ₂ Br ₂	Cr(3-Ipy) ₂ l ₂	
394m	410s 324ys.b v(Cr-Cl)	406s	408s	
290w	300s	300s 282vs v(Cr-Br)	296s	
262m 234w ^a	260s v(Cr–N)	258m v(Cr–N) 246vs	272s v(Cr–N) 254m 234vs v(Cr–I)	
	$\frac{188w}{178m}\delta(Cr-N)$	184w 172m	182w	
	102s + 0(CI-CI) $132m \int_{\nu} (CI-CI)^{b}$ 94vs	146s δ (Cr–N) 104s	164m 138s δ (Cr–N) 91m	
3,5-Clpy	Cr(3,5-Clpy) ₂ Cl ₂	$Cr(3,5-Clpy)_2Br_2$	$Cr(3,5-Clpy)_2I_2$	$Cr(3,5-Clpy)_4I_2$
392vs	396s 324vs #(Cr_Cl)	396m	396s	390vs
	272s v(Cr–N)	272vs, b $\nu(Cr-N)$ $\nu(Cr-Br)$	262s v(Cr-N)	270vs v(Cr-N)
106m h	202-		250vs,b v(Cr-I)	202
1 7018,0	202s 196sh	194m	190vs	202s 190vs

(continued on facing page)

TABLE III. (continued)

$164s,vb \\ \delta (Cr-N) \\ \delta (Cr-Cl) \\ 140m \\ \omega (Cr-Cl)^{b}$	158w δ(Cr–N)	154s δ(Cr–N)	170m δ(Cr–N)
	146m	130vs,b	114m
112vs,b	104w	88m	86s

^aMany weak absorptions at lower frequency. ^bDeformations of long Cr--Cl bonds.

Far Infrared Spectra

From the spectra of the bis(pyridine) complexes (Table III) it is apparent that the strong absorptions near 320 cm^{-1} in the spectra of the chlorides can be assigned to stretching vibrations of the short Cr-Cl bands; no halogen-dependent bands appear in this region with the bromo- and iodo-complexes (Fig. 1). In all spectra there are very strong absorptions near 260 cm⁻¹ which are assigned to ν (Cr–N) vibrations. The bromo-complexes exhibit additional bands in this region which are assigned to $\nu(Cr-Br)$ vibrations; in one case { $Cr(3,5-Clpy)_2Br_2$ } the $\nu(Cr-N)$ and $\nu(Cr-N)$ Br) absorptions appear to coincide, and in others it is uncertain which absorption is which. These assignments are similar to those reported recently [3] for the analogous complexes, $Cr(mepy)_2Hal_2$, Hal = Cl or Br, except that the ν (Cr-N) absorptions are generally at lower frequency for the halo-pyridine complexes as might be expected because of the larger mass of the ligand. Deformation vibrations of the (Cl-Cr-Cl) and (N-Cr-N) units and stretching vibrations of the long Cr-Cl bands are expected in the 150 cm⁻¹ region, and tentative assignments have been given.

The iodo-complexes $Cr(X-py)_2I_2$ are the first of this stoicheiometry to be investigated, and comparison with the chloride and bromide spectra suggests that ν (Cr-I) vibrations occur near 240 cm⁻¹. The larger size of iodide and its reluctance to form bridges could have produced tetrahedral structures for the iodo-complexes. However, a structural change at iodide in the series $Cr(X-py)_2Hal_2$ would be expected to bring $\nu(Cr-I)$ above $\nu(Cr-Br)$. The antiferromagnetic behaviour of the iodides indicates a polymeric structure, and tetrahedral monomeric chromium(II) complexes should have greater than spin-only magnetic moments through a first order orbital contribution. Additionally, solution spectra of $Cr(3-Ipy)_2I_2$ (ethanol) and $Cr(3,5-Clpy)_2I_2$ (ethanol) and chloroform) differed from the reflectance spectra indicating solvolysis, and the extinction coefficients of the d-d transitions ($\epsilon \approx 301 \,\mathrm{dm^3 \ mol^{-1} \ cm^{-1}}$ for bands near 14000 cm⁻¹) were not large enough to suggest tetrahedral coordination.

The absence of intense absorptions near 240 cm⁻¹ from the spectra of the complexes $Cr(X-py)_2(H_2O)_2$ -I₂ and $Cr(3,5-Clpy)_4I_2$ suggests that the iodide is held by 'long' bands to the metal ion. The corresponding methylpyridine complexes gave similar spectra [3].

Experimental

Preparations

These were performed under nitrogen using deoxygenated solvents. Analyses are given in Table I. The complexes which were obtained by methods analogous to method E, given below, are indicated in Table II. The chlorides and bromides were obtained from concentrated ethanolic solutions of their constituents, but the iodides, being highly soluble in ethanol, were isolated from solutions in acetone.

A) Cr(3,5-dichloropyridine)₂ I_2

An alcoholic solution (30 cm^3) of 3,5-dichloropyridine (2.7 g) was added to an alcohol solution (25 cm^3) of $\text{CrI}_2 \cdot 5\text{H}_2\text{O}$ (3.6 g). The bluish-green solution was evaporated to dryness giving a dark red precipitate of the tetrakis(amine) complex Cr(3,5- $\text{Clpy})_4\text{I}_2$ (see B). This compound was suspended for 2.5 h in acetone at about 60 °C to remove two of the pyridine molecules. The yellowish orange product was filtered off, washed with acetone and pumped dry for 5 h.

B) Cr(3,5-dichloropyridine)₄ I_2

A cold ethanolic solution (20 cm³) of 3,5-dichloropyridine (6.8 g) was added to a cold ethanolic solution (30 cm³) of $CrI_2 \cdot 5H_2O$ (4.5 g). After a few hours at room temperature, dark red crystals separated. These were filtered off, washed with ethanol and pumped dry for 4 h.

C) $Cr(3-chloropyridine)_2(H_2O)_2I_2$, $Cr(3-bromo-pyridine)_2(H_2O)_2I_2$, and $Cr(3-iodopyridine)_2I_2$

A solution of 3-chloropyridine (3.1 g) in acetone (20 cm³) was added to a solution of $CrI_2 \cdot 5H_2O$ (5.4 g) in acetone (30 cm³). The resulting dark green precipitate was filtered off, washed with acetone and pumped dry for 4 h.

The preparations of $Cr(3-bromopyridine)_2(H_2O)_2$ -I₂ and $Cr(3-bromopyridine)_2I_2$ were analogous to that of $Cr(3-bropyridine)_2(H_2O)_2I_2$.

D) Cr(3-bromopyridine) $_2I_2$

Because iodide bridges less readily than chloride or bromide, iodo-complexes containing two pyridine molecules tend to complete an octahedral structure by coordination of two water molecules as in Cr(3- $Clpy)_2(H_2O)_2I_2$ and $Cr(3-Brpy)_2(H_2O)_2I_2$. To prepare the anhydrous compound $Cr(3-Brpy)_2I_2$, the amine was dissolved in 2,2-dimethoxypropane and a solution of hydrated chromium(II) iodide in acetone added. A pale green precipitate separated, and the suspension was boiled for some minutes to ensure complete reaction of the water of hydration with the dimethoxypropane. The solid was then filtered off, washed with acetone, and dried. This procedure was not successful with Cr(3-Clpy)2- $(H_2O)_2I_2.$

E) Other Complexes

The preparation of the remaining complexes (marked E in Table I), were all analogous to that of $Cr(3-chloropyridine)_2Cl_2$ which follows.

An alcoholic solution (50 cm³) of 3-chloropyridine (5.9 g) was added to an alcoholic solution (30 cm³) of $CrCl_2 \cdot 4H_2O$ (5.0 g). The resulting green precipitate was filtered off, washed with absolute ethanol and dried under continuous pumping for 4 h.

Several attempts were made to prepare tetrakis-(amine) compounds of 3-chloro-, 3-bromo-, and 3iodo-pyridines with chromium(II) iodide. The first two formed yellow solutions with an excess of ligand when well cooled in liquid nitrogen, but at ordinary temperature the solutions became green as the bis-(amine) compound formed. When the yellow solids were filtered off rapidly the green compounds formed on the sinter. 3-Iodopyridine forms a brown, presumably tetrakis(pyridine) compound, but the analyses were poor.

Physical measurements were carried out as before [7].

References

- (a) R. Colton and J. H. Canterford, 'Halides of the First Row Transition Elements', Wiley-Interscience, London, (1969).
 (b) ibid p. 440.
- 2 (a) A. Earnshaw, L. F. Larkworthy and K. S. Patel, *Chemy. Ind.*, 1521 (1965);
 (b) D. G. Holah and J. P. Fackler, *Inorg. Chem.*, 4, 1112 (1965).
- 3 M. M. Khamar, L. F. Larkworthy and M. H. O. Nelson-Richardson, *Inorg. Chim. Acta*, 28, 245 (1978).
- 4 B. Morosin, Acta Cryst., B31, 632 (1975).
- 5 A. B. P. Lever, 'Inorganic Electronic Spectroscopy', Elsevier, Amsterdam, 1968; (a) p. 229; (b) p. 287.
- 6 A. F. Wells, 'Structural Inorganic Chemistry', Oxford, 1962, 3rd Edition, p. 915.
- 7 M. M. Khamar, L. F. Larkworthy, K. C. Patel, D. J. Phillips and G. Beech, Aust. J. Chem., 27, 41 (1974).